38,859 research outputs found

    Fully Constrained Majorana Neutrino Mass Matrices Using Σ(72×3)\Sigma(72\times 3)

    Full text link
    In 2002, two neutrino mixing ansatze having trimaximally-mixed middle (ν2\nu_2) columns, namely tri-chi-maximal mixing (TχM\text{T}\chi\text{M}) and tri-phi-maximal mixing (TϕM\text{T}\phi\text{M}), were proposed. In 2012, it was shown that TχM\text{T}\chi\text{M} with χ=±π16\chi=\pm \frac{\pi}{16} as well as TϕM\text{T}\phi\text{M} with ϕ=±π16\phi = \pm \frac{\pi}{16} leads to the solution, sin2θ13=23sin2π16\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \frac{\pi}{16}, consistent with the latest measurements of the reactor mixing angle, θ13\theta_{13}. To obtain TχM(χ=±π16)\text{T}\chi\text{M}_{(\chi=\pm \frac{\pi}{16})} and TϕM(ϕ=±π16)\text{T}\phi\text{M}_{(\phi=\pm \frac{\pi}{16})}, the type~I see-saw framework with fully constrained Majorana neutrino mass matrices was utilised. These mass matrices also resulted in the neutrino mass ratios, m1:m2:m3=(2+2)1+2(2+2):1:(2+2)1+2(2+2)m_1:m_2:m_3=\frac{\left(2+\sqrt{2}\right)}{1+\sqrt{2(2+\sqrt{2})}}:1:\frac{\left(2+\sqrt{2}\right)}{-1+\sqrt{2(2+\sqrt{2})}}. In this paper we construct a flavour model based on the discrete group Σ(72×3)\Sigma(72\times 3) and obtain the aforementioned results. A Majorana neutrino mass matrix (a symmetric 3×33\times 3 matrix with 6 complex degrees of freedom) is conveniently mapped into a flavon field transforming as the complex 6 dimensional representation of Σ(72×3)\Sigma(72\times 3). Specific vacuum alignments of the flavons are used to arrive at the desired mass matrices.Comment: 20 pages, 1 figure. arXiv admin note: substantial text overlap with arXiv:1402.085

    Deviations from Tribimaximal Neutrino Mixing using a Model with Δ(27)\Delta(27) Symmetry

    Full text link
    We present a model of neutrino mixing based on the flavour group Δ(27)\Delta(27) in order to account for the observation of a non-zero reactor mixing angle (θ13\theta_{13}). The model provides a common flavour structure for the charged-lepton and the neutrino sectors, giving their mass matrices a `circulant-plus-diagonal' form. Mass matrices of this form readily lead to mixing patterns with realistic deviations from tribimaximal mixing, including non-zero θ13\theta_{13}. With the parameters constrained by existing measurements, our model predicts an inverted neutrino mass hierarchy. We obtain two distinct sets of solutions in which the atmospheric mixing angle lies in the first and the second octants. The first (second) octant solution predicts the lightest neutrino mass, m329 meVm_3 \sim 29~\text{meV} (m365 meVm_3 \sim 65~\text{meV}) and the CPCP phase, δCPπ4\delta_{CP} \sim -\frac{\pi}{4} (δCPπ2\delta_{CP} \sim \frac{\pi}{2}), offering the possibility of large observable CPCP violating effects in future experiments.Comment: 9 pages, 3 figure

    Stark ladders as tunable far-infrared emitters

    Get PDF
    A superlattice of GaAs/Ga(1 – x)Al(x)As quantum wells forms a Stark ladder under the influence of a perpendicular electric field. A two level incoherent emitter system, formed by radiative intersubband transitions between adjacent wells, is investigated as a tunable far-infrared radiation source. Intersubband transition rates are calculated at 4, 77, and 300 K for applied fields from 0 to 40 kV cm(–1). It is shown that the quantum efficiency of the radiative emission reaches a maximum at low temperatures for a field of 32 kV cm(–1). Under these conditions the emission wavelength is 38 µm with an estimated power output of 1.1 mW. © 1998 American Institute of Physics

    Clear air turbulence

    Get PDF
    Research on forecasting, detection, and incidents of clear air turbulenc

    Photoreflectance and surface photovoltage spectroscopy of beryllium-doped GaAs/AlAs multiple quantum wells

    Get PDF
    We present an optical study of beryllium delta-doped GaAs/AlAs multiple quantum well (QW) structures designed for sensing terahertz (THz) radiation. Photoreflectance (PR), surface photovoltage (SPV), and wavelength-modulated differential surface photovoltage (DSPV) spectra were measured in the structures with QW widths ranging from 3 to 20 nm and doping densities from 2×10(10) to 5×10(12) cm(–2) at room temperature. The PR spectra displayed Franz-Keldysh oscillations which enabled an estimation of the electric-field strength of ~20 kV/cm at the sample surface. By analyzing the SPV spectra we have determined that a buried interface rather than the sample surface mainly governs the SPV effect. The DSPV spectra revealed sharp features associated with excitonic interband transitions which energies were found to be in a good agreement with those calculated including the nonparabolicity of the energy bands. The dependence of the exciton linewidth broadening on the well width and the quantum index has shown that an average half monolayer well width fluctuations is mostly predominant broadening mechanism for QWs thinner than 10 nm. The line broadening in lightly doped QWs, thicker than 10 nm, was found to arise from thermal broadening with the contribution from Stark broadening due to random electric fields of the ionized impurities in the structures. We finally consider the possible influence of strong internal electric fields, QW imperfections, and doping level on the operation of THz sensors fabricated using the studied structures. © 2005 American Institute of Physic
    corecore